
Fakultät für Informatik und Mathematik

Efficient Solutions for Sliding
Block Puzzles

Bachelor Thesis by
Till Wübbers

Under the supervision of
Prof. Dr. Martin Kreuzer

Passau, February 2019

Contents

1 Zusammenfassung 4

2 Introduction 5
2.1 Rules . 6
2.2 Pieces . 6
2.3 Puzzle graph . 6
2.4 Paths . 6

3 Heuristics 8
3.1 Admissibility . 8
3.2 Consistency . 8
3.3 Manhattan Distance . 8
3.4 Linear Conflict . 9
3.5 Modified Linear Conflict . 9

4 Graph search algorithms 11
4.1 Graph shape . 11
4.2 Complexity . 11
4.3 Depth-first search and iterative deepening 12
4.4 A* . 12
4.5 Iterative Deepening A* . 14
4.6 Comparing A* and IDA* . 16

5 Bidirectional Search 17
5.1 Goal position . 17
5.2 Near-Optimal Bidirectional Search . 17
5.3 Algorithm comparisons . 23

6 Implementation 26
6.1 Command-line Tool . 26
6.2 Locating performance problems . 27
6.3 Transposition Tables . 27
6.4 Efficient Computation of Possible Moves . 28
6.5 Implementing the Linear Conflict Heuristic 29
6.6 Priority queue for A* . 29

7 Algorithm timings 30
7.1 Analyzing the timings . 32

2

8 Conclusion 33
8.1 Future work . 33

A Instructions for accompanying CD 34

3

1 Zusammenfassung

In dieser Arbeit werden die Algorithmen A*, Iterative Deepening A* und Near-Optimal
Bidirectional Search zum Lösen von Schiebepuzzles beschrieben. Um die Algorithmen
anwenden zu können, wird das Puzzle dabei als Graph von Spielpositionen definiert. Da die
drei Algorithmen Heuristiken benötigen, wird die Manhattan Distance Heuristik angepasst,
um für Schiebepuzzles zu funktionieren. Außerdem wird die Linear Conflict Heuristik
benutzt und durch eigene Anpassungen verbessert. Die Funktionsweise der Algorithmen
wird erklärt und die theoretischen Unterschiede in Geschwindigkeit und Speicherverbrauch
werden verglichen.

Für die Arbeit wurden die Algorithmen in der Programmiersprache Rust implementiert.
Ein Komandozeilenprogramm zur effizienten Auswertung, sowie eine Webseite für eine
visuelle Darstellung wurden erstellt. Während der Implementierung wurden verschiedene
Methoden zur Optimierung des Programmcodes angewendet. Die Laufzeit und Zahl der
besuchten Knoten der Algorithmen bei verschiedenen Puzzles wird mit dem Programm
gemessen. Die Puzzles sind in Kategorien aufgeteilt und die Algorithmen werden für jede
Kategorie verglichen.

4

2 Introduction

Sliding block puzzles are a game of moving puzzle pieces to a goal position on a board.
The classic “15-puzzle” is played on a four by four squares grid, with 15 pieces that have a
part of an image printed on them. The goal is to move the pieces in such a way that they
combine into a bigger image. A more complicated sliding block puzzle is “Rush Hour”,
where the board consists of differently shaped cars that can only move on one axis. To
solve the puzzle, the red coloured car has to be moved to the right edge of the board.

The goal of this thesis is to assess three algorithms that are capable of finding an optimal
solution for any sliding puzzle, the A*, Iterative Deepening A* and Near-Optimal Bidirec-
tional Search algorithms. We will compare the amount of nodes each alorithm expands,
as well as their respective memory and time complexity.

Figure 2.1: The Rush Hour game

5

2.1 Rules

Sliding block puzzles are played on a two-dimensional grid that is filled with rectangular
pieces of varying size. These can be moved around, where one move constitutes a single
vertical or horizontal step. Pieces cannot move on top of one another and cannot slide
diagonally in one step. The same puzzle will always have the same pieces, a position is
a specific arrangement of these pieces on the grid. A puzzle will always have exactly one
start position and one or more goal positions. It is considered solved when a series of moves
is found that connects beginning to end. It is possible that there exists no connection like
this. Therefore some puzzles are unsolvable.

2.2 Pieces

A piece p = (lp, gp) has a current location lp ∈ N2 and a goal location gp ∈ N2. Pieces are
rectangular and can span multiple fields of the grid, the location of a piece is defined as
the x and y coordinates of the top left corner. When every piece on the board is at its
goal location, the puzzle is considered to be solved.

2.3 Puzzle graph

The search algorithms in this thesis search for a path between nodes of a graph. To make
the problem of solving a sliding puzzle applicable to these algorithms, we need to define a
graph describing the different positions and their relationships, as seen in Figure 2.2.

G = (N,E)

The set of nodes N contains all possible positions of a given puzzle. Every edge in E
describes how a single piece of the puzzle gets moved one step, and therefore connects one
position to another position in N . The start and goal positions of a puzzle are given by
s ∈ N and g ∈ N . Any sliding puzzle can now be specified by the puzzle graph G and the
nodes s and g.

2.4 Paths

Since solving a sliding puzzle requires a path from the start position to the goal position
to be found, we require a definition of how such a path would look. Any path on the graph
can be described as a tuple of edges (e1, ..., en) ∈ En. A solution with n steps on a graph
(N,E) is defined as a path E∗ = (e1, ..., en) ∈ En, with the conditions that e1 = s and
en = g.

6

goal position gstart position s positions
in N

moves
in E

pieces in A

Figure 2.2: Graph of a simple puzzle

7

3 Heuristics

Most search algorithms require a heuristic function to estimate the smallest number of
moves that are needed to reach the goal position. We will call this the goal distance. This
information is used to direct the search closer towards the goal in each step. In the case of
sliding puzzles, the distance of any single piece to its intended position can be estimated
as well.

On a graph (N,E) with goal g, any heuristic function h(n) with a board position n ∈ N
will estimate the smallest number of moves from n to g.

3.1 Admissibility

As defined in [1], page 94, “an admissible heuristic is one that never overestimates the
cost to reach the goal”. Let h∗(n) be the exact distance from n to g. A heuristic h(n) is
admissible if ∀n : h(n) ≤ h∗(n).

3.2 Consistency

Let s be a board state and s′ be any successor of s. A heuristic h(n) is consistent or
monotonic, if h(s) ≤ h(s′) + c(s, s′) where c(s, s′) is the cost of moving from s to s′.
Additionally, every consistent heuristic is also admissible (see [1], page 95).

When applied to sliding puzzles, the condition can be simplified. Since s′ is a direct
successor of s and moving along a single edge means moving one step, the cost is always
1. This means the condition will always be h(s) ≤ h(s′) + 1.

3.3 Manhattan Distance

To estimate the smallest amount of moves needed to connect two points n = (x1, y1) and
g = (x2, y2) on the N× N grid, we can use the Manhattan distance heuristic:

m : (N2,N2)→ N, (n, g) 7→ |x2 − x1|+ |y2 − y1|

This may be used as a guess of the goal distance for a single piece, and will be exactly
correct if there are no other pieces blocking its way.

8

To estimate the goal distance of an entire game position n ∈ N , we can add up the
Manhattan distances of all pieces in that position. This yields the map

m∗ : N → R, n 7→
∑
a∈A

m(a)

3.4 Linear Conflict

Linear Conflict, as defined in [2], section 4.2, is an additional heuristic that works on top
of Manhattan distance. It only applies in the special case of two pieces that are in the
same row or column. If they have their goal position in that row or column as well, and if
additionally the goal positions of both pieces are behind the other piece so that they need
to move around each other, at least two extra moves are required.

b a ba

Position Goal

manhattan(a) = 3

manhattan(b) = 3

5 moves

3 moves

linear_conflict(a,b) = 2

Figure 3.1: Example of a situation where Linear Conflict heuristic applies

3.5 Modified Linear Conflict

For puzzles that have blocks without a goal position, we can create a modified version of
Linear Conflict. Let the set of pieces A = {a1, ..., ai} have goal positions G = {g1, ..., gi}
behind piece b, and let all a ∈ A, g ∈ G and b be on the same axis. Suppose that piece b
does not have a goal. With the definition above, Linear Conflict would not apply in this
case, since for any pair (a, b) both pieces need a goal position. However, we can show that
at least one extra move is still required in this situation.

For any a ∈ A, let n be the minimal number of moves required to get to the goal, if
nothing is blocking the path. There are two possibilities to solve the conflict; either a
moves around b, or b moves out of the way.

Let p be the current board state and s be any successor. Let lc(x) be the function of the
modified Linear Conflict heuristic. We claim that lc(p) = 1 is consistent.

9

Case 1 : a moves around b:
Since both blocks and the goal are on the same axis, a has to make at least two moves on
the perpendicular axis. These steps will not move a closer to the goal, meaning that the
minimal number of moves is now n+ 2.

This case fulfills the requirement of consistency, namely

lc(p) ≤ c(p, s) + lc(s)

if all a ∈ A are moved out of the axis, we have lc(s) = 0 and 1 ≤ c(p, s) + 0 = 1 ≤ 1.
Otherwise we have lc(s) = 1 and 1 ≤ c(p, s) + 1 = 1 ≤ 2.

Case 2, b moves out of the way:
Moving b out of the way does not bring a closer to its goal. This increases the minimal
number of moves to n+ 1. Now any other block a ∈ A can move to the goal without being
blocked by b, making this heuristic only applicable once for the set of all a ∈ A on the
same axis.

This case is also consistent, i.e. we have lc(p) ≤ c(p, s) + lc(s). The number lc(s) is now
0, since b is not blocking any a ∈ A, and we have 1 ≤ c(p, s) + 0 = 1 ≤ 1.

Both cases are consistent and add at least one extra move. Since the Modified Linear
Conflict heuristic is consistent, it is also admissible.

b a1

b

a2

Position Goal

1 move

linear_conflict(a1,a2,b) = 1

a2

manhattan(a1) = 3

a1

manhattan(a2) = 3 3 + 3 moves

Figure 3.2: Example of a situation where the Modified Linear Conflict heuristic applies

10

4 Graph search algorithms

Now that we have defined the graph of possible positions and have a heuristic to guide the
search, we can use graph traversal algorithms to search for possible solutions.

4.1 Graph shape

A common use-case for the graph search algorithms described in this thesis is pathfinding
on a two-dimensional grid. In this kind of problem, the shortest path between a start
and a goal point on a grid has to be found. For example the A* algorithm was originally
developed to move a robot to it’s target. This representation is a useful base for describing
the steps an algorithm takes, as every node of the board graph can be described as a simple
point on the grid.

Sliding block puzzles can describe the same problem when just having a single block. The
solution path is just the shortest list of steps that a block has to take to reach its goal
position. Since this representation allows for a more intuitive understanding of how the
algorithms traverse the possibility state, we will often use this for the examples in this
thesis.

It is to be noted that most state graphs of sliding block puzzles cannot be easily represented
by a two-dimensional grid, since multiple blocks cross over the same fields. For example
the graph in Figure 2.2 has a board with four fields, but the state graph has more than
four states.

4.2 Complexity

The key difficulty of solving sliding puzzles with brute-force methods is the sheer number
of possible moves. Some of the example levels that come with the implementation have
shortest solution paths of over 100 steps. While this sort of puzzle often only has one or
two possible moves at any time, the space requirement of simple algorithms often exceeds
physical memory limits. Breadth first search has a space complexity of O(bd) (see [3],
section 2). At a depth of 100 even with a low branching factor b, O(b100) will require more
than the 16GB of memory the computer which was used for testing had. Therefore more
efficient algorithms are needed.

11

4.3 Depth-first search and iterative deepening

This section is based on the definitions for depth-first search in [4], and iterative deepening
in [3], section 4.

On our graph (N,E), we begin at the start position s ∈ N and move along the first edge
starting at this node. The visited node is stored and the process of moving along the first
edge of the next node is repeated until either the node has no children, or we reach an
already visited node. We then go back and remove all fully explored nodes until there is
another node with an unexplored edge. Once we find the goal node, all edges that connect
the stored nodes will build the path to the goal. In this way all nodes of the graph are
explored eventually, however it is not guaranteed that the solution which is found is an
optimal one.

To fix this, iterative deepening can be applied. This means that there will be a depth
bound d = 1, at which the search will reset to the previous node and continue with the
next edge that has not been visited. If the entire tree has been searched for a certain depth
bound, the number d is increased by one, and the search is restarted.

If there exists a solution at depth x, it will eventually be found when d = x, since the
entire tree is searched before d is increased. This has the obvious drawback of searching
the entire tree for every depth up to the depth of the solution.

4.4 A*

The algorithm uses a pending and a known set, which are also referred to as open and
closed sets respectively. The pending set contains all nodes that have been found but have
not been expanded yet. These nodes are candidates for being expanded in a future step.
All nodes that have been expanded in a previous step are stored in the known set. These
nodes will never need to be expanded again, since the algorithm already reached this point
through an optimal path, and no new knowledge can be gained.

For using the A* algorithm, we define c(n) as the distance from the start position s to
the current node n ∈ N . This will be referred to as the cost of n, and will also be used in
later algorithms.

We use h(n) as the sum of the Manhattan Distance and Linear Conflict heuristics functions.
The function

f(n) : N → R, n 7→ c(n) + h(n)

therefore describes the estimated distance from the start s via position n to goal g. In
every step, the node with the smallest heuristic value is picked for expansion.

When expanding the picked node, we look at all possible child nodes that are not in the
known set. If a child node is already in the pending set, the heuristic values of both
instances of the node are compared. The version with the smaller heuristic distance is put
in the pending set, while the other one is discarded. For each child node added to the

12

pending set, the currently expanding node is stored as it’s parent. Once the goal node
has been expanded, the path to the goal node can be tracked by recursively following
parents, starting from the goal and stopping when reaching the start. Since our heuristic
is admissible, the A* algorithm will always find an optimal solution if one exists (see [1],
chapter 3.5.2).

Algorithm 1: A*

Input : start node s, goal node g, graph (E,N)
Output: p = (s,...,g), an optimal path from s to g,

or nopath if no path from s to g exists.
// Set of all known (node,parent) tuples

parents ← {(s,)}
// Set of nodes waiting to be expaned

pending ← {s}
// Set of all nodes that have been fully expanded

known ← {}

while pending 6= ∅ do
// Pick the node in pending with smallest goal distance

Choose n∗ ∈ pending with f(n∗) ≤ f(n), ∀n ∈ pending

if n∗ = g then
// Generate full path by recursively finding parent

return (s, ..., parent(parent(g)), parent(g), g)

end

let (n∗, n∗p) be the tuple with matching n∗ in parents

// Look at all children "o" that are not in known list

foreach (n∗, o) ∈ E with o ∈ (N \ known) do
if o ∈ pending then

// Update the parent to current parent, if the current path

to the node is shorter

let (o, op) be the tuple with matching o in parents
if d(n∗) + 1 < d(o) then

replace (o, op) with (o, n∗) in parents
end

else
add (o, n∗) to parents

end

end

end
return nopath

13

4.5 Iterative Deepening A*

The Iterative Deepening A* (IDA*) algorithm is a graph search algorithm that, like A*,
uses a heuristic function to find a path between two nodes on a graph. We can use the
same heuristic function as described in the section about A*. One major change in the
IDA* algorithm is that there is no pending list. The only values that are continuously
stored in memory are the depth bound that describes the maximum length a path can
have in this step, and the path to the current node.

At first, the depth bound is set to the heuristic value of the start node. Since the heuristic
function is required to be admissible, this value is never overestimated and will likely be
too small. A depth-first search is used to find the goal node, but every search path is cut
off when the heuristic reaches the depth bound. In this case the search will be continued
at the next unseen child node. Once the entire tree up to the depth bound is searched, the
bound is increased to the smallest known heuristic value, which will be at least (bound+1).
When the goal node is found, the current path can be returned immediately as the optimal

14

path.

Algorithm 2: IDA*

Input : start node s, goal node g, graph (E,N)
Output: nopath, if the puzzle is unsolvable.

(s,n1,...,ni,z), if a path from s to g exists.
cutoff ← h(s)
path ← s
while true do

t ← search(path, 0, cutoff)
if t = true then

return path
end
if t =∞ then

return false
end

end

Function search(path,depth,cutoff)
node ← last element from path
f ← depth + h(node)
if f > cutoff then

return false
end
if s = z then

return true
end
min ←∞
for child in children(node) do

if child not in path then
Insert child into path
t ← search(path, depth+1, cutoff)
if t = true then

return true
end
min = min(min,t)
Remove child from path

end

end

end

15

4.6 Comparing A* and IDA*

When applying the A* algorithm on hard sliding block puzzles in practice, memory limi-
tations quickly become apparent. The IDA* algorithm operates in linear space, while the
A* algorithm requires exponential amounts of memory (see [5], page 539). The lower space
requirement of IDA* comes at the cost of node expansions, as can be seen in Figure 4.1.
In this example, the IDA* algorithm did almost four times as many expansions as the A*
algorithm.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 5 10 15 20 25 30 35 40 45

N
o
d
e
 e

x
p
a
n
si

o
n
s

Depth

one-free-15-puzzle-a

A* (546952)
IDA* (2107984)

Figure 4.1: The number of node expansions at each depth of A* and IDA* for the puzzle
“15-puzzle-a”

16

5 Bidirectional Search

Bidirectional search is a way to potentially speed up graph traversal by searching from
the start and goal position simultaneously. The search can be terminated when the two
search spaces intersect. However, some additional conditions are required to make sure
the selected path is optimal. The Near-Optimal Bidirectional Search (NBS) algorithm
described in [6] is a bidirectional search algorithm that finds optimal paths.

5.1 Goal position

For any kind of bidirectional search, a goal position is needed. This is simple for tasks
where there is only a single goal position available. In the case of sliding puzzles this is
true for any board where all pieces have a goal position. However, there are also boards
with pieces that do not have a goal position and can be in any position when the important
pieces reach their goal. This means that on our graph of possible positions, there can be
multiple goal nodes.

If we now pick any goal node at random, it is not guaranteed that an optimal path to this
node is optimal for all of the goal nodes. Furthermore, there might not even exist any
path from the start to this node, making it impossible to find a solution.

For this reason, the following considerations on bidirectional search only apply to the
search of boards where every piece has a goal position.

5.2 Near-Optimal Bidirectional Search

The Near-Optimal Bidirectional Search (NBS) algorithm has some features that make it
useful for solving sliding block puzzles. ”As heuristics get weaker, or the problems get
harder, the bidirectional approaches improve relative to A*” (see [6], section 8). For some
of our puzzles, the heuristic estimate can be a lot lower than the actual shortest path
length, making NBS a good approach for solving difficult puzzles.

In Figure 5.1 the step-by-step expansions of the algorithm are displayed. The node expan-
sions themselves work like in any of the previous algorithms, where the surrounding moves
are discovered and added to a open list. However, the selection of the nodes which are
expanded is very different. Every step of the algorithm a pair of nodes is expanded. This
pair is selected from all possible pairs of one forward node U from the forward open list

17

and one backward node V from the backward open list. Each pair (U, V) has a lb-value,
which is calculated as follows:

lb(U, V) = max{fF (U), fB(V), c(U) + c(V)}

The minimum of all lb-values creates a lower bound on the number of moves required to
solve the puzzle.

Out of all pairs, the ones that have the minimal lb-value are selected. Since lb contains
the maximum of forward and backward heuristic values, it is possible that on one side of
the algorithm a node with non-minimal heuristics is picked. This happens in step 6 of
Figure 5.1, where all possible node combinations are selected. Since min{fF (OpenF)} = 9
(the minimum heuristic of all open forward nodes) and all nodes in OpenB are smaller or
equal to 9, the maximum doesn’t exclude any pairs. The condition of c(U) + c(V) doesn’t
play a role here, since the biggest sum of costs is 8.

From all the pairs that fulfill this condition a random pair is selected, with the following
condition: The cost of each node has to be minimal, within its forwards or backwards set
of nodes. In step 6 of Figure 5.1 only one node like this exists for both directions, each
with a cost of 1. If multiple nodes of a search direction have the same minimal cost, any
of these node can be picked.

18

g

s

(f,c)
f
Node scores

Heuristic value
c Cost Forward open list

Backward open list
Closed list

Unexplored node
Node lists Node types

Starts
Goalg
Selected for next expansionbold

lb = 7

LB-score of selected pairlb
lb(u,v) = max { f(u), f(v), c(u)+c(v) }

lb = 7

g
(7,0)

(9,1)

s
(7,0)

(7,1)

(7,1)

(7,1)

(9,1)

g

s

lb = 7

(9,1)

(7,1)

(9,1)

(9,2)

(7,2)

(7,2)

g

s

lb = 7

(9,1)

(7,2)

(9,1)

(9,2)

(7,3)

(9,3)

(7,2)

g

s

lb = 7

(9,1)

(9,1)

(9,2) (9,3)

(7,2)

(9,4)

(7,4)

(7,3)

g

s

lb = 9

(9,1)

(9,1)

(9,2) (9,3) (9,4)

(7,3)

(9,5)

(9,3)

g

s

lb = 9

(9,3) (9,4)

(7,3)

(9,5)

(9,3)

(11,2)

(9,2)

g

s

lb = 9

(9,4)

(7,3)

(9,5)

(9,3)

(11,2) (11,4) (11,3)

g

s

lb = 9

(7,3)

(11,2) (11,4) (11,3) (11,5)

(9,4)

g

s

lb = 11

(7,4)

(11,2) (11,4) (11,3) (11,5)

(9,4)

(9,5)

(11,6)

g

s

lb = 11

(7,4)

(11,5)

(9,4)

(11,6) (11,3)

g

s

lb = 11

(7,4)

(9,4)

(11,6) (11,4)

1 2 3

4 5 6

7 8 9

10 11 12

Figure 5.1: Node pair expansions of the NBS algorithm

19

Figure 5.2: Expanded nodes by NBS on an asymmetrical board. Closed forward nodes
are blue, closed backward nodes are red. Created with the NBS example
application from [7].

In algorithm 3 λF and λB are empty paths starting from the start s and the goal g
respectively. With every iteration of the loop, a pair of one forward and one backward
path is selected. Each path is expanded, and the new paths are added to the open set
OpenF for forward paths and OpenB for backward paths. If two paths in the open set
lead to the same node, the longer path is discarded. Once a forward and a backward path
meet, they form a connection from s to g. The length of this combined path is stored in
C, and will be lowered for each shorter path that is found. The algorithm continues until
there are no more paths in the open sets that could possibly be shorter. This is determined
by the smallest heuristic value of all paths in the open set.

20

Algorithm 3: NBS, based on [6]

Input : start node s, goal node g
Output: p = (s,...,g), an optimal path from s to g,

or nopath if no path from s to g exists.

// Shortest known path

P ← nopath
// Cost of P

C ←∞
// Paths that will be expanded

OpenF ← {λF }
OpenB ← {λB}
// Paths that have already been expanded

ClosedF ← {}
ClosedB ← {}

while OpenF 6= ∅ and OpenB 6= ∅ do
Pairs ← OpenF ×OpenB

// Lowest bound of all pairs

lbmin ← min{lb(X,Y) | (X,Y) ∈ Pairs}
// If lbmin is bigger or equal to the cost of the shortest known

path, that path is already optimal.

if lbmin ≥ C then
return P

end

// Choose pair with minimal lb(X,Y) and minimal cost of the

individual paths

minset ← {(X,Y) ∈ Pairs | lb(X,Y) = lbmin}
Uset ← {X | ∃Y (X,Y) ∈ minset}
Umin ← min{c(X) | X ∈ Uset}
Choose any U ∈ Uset such that c(U) = Umin
Vset ← {Y | (U, Y) ∈ minset}
Vmin ← min{c(Y) | Y ∈ V set}
Choose any V ∈ V set such that c(V) = V min

// Expand paths of that pair

Forward-Expand(U)
Backward-Expand(V)

end
return P

21

The Forward-Expand function adds new paths to the forward open list OpenF . In the
previous steps of the algorithm, the input path U has been selected to be expanded. The
function expandF (U) creates new paths that add one extra step to the end of U . U is
then moved to the closed list ClosedF so that it will never be expanded again.

For every new path W , the opposite open list is checked to see if the end of W and the
end of opposing path Y meet. If that is the case a connection from the start to the goal
has been found, since W is a forward path that starts from s and Y is a backwards path
that starts from g. If this combined path is shorter than the current best distance C, C is
updated to the new shortest path length.

W is now added to OpenF , unless there already is a known path X that leads from s to
the same node as W , and that path X is shorter.

Algorithm 4: NBS - Function: Forward-Expand, based on [6]

Input: Path to be expanded U

Move U from OpenF to ClosedF
foreach W ∈ expandF (U) do

// Update best path if W connects to a backwards path and is

shorter.

if ∃Y ∈ OpenB with end(Y) = end(W) then
if c(W) + c(Y) < C then

P = W ∪ Y
C = c(W) + c(Y) = c(P)

end

end

// Add W to OpenF, unless a shorter path to the same point

already exists.

if ∃X ∈ OpenF ∪ ClosedF with end(X) = end(W) then
if c(W) < c(X) then

remove X from OpenF or ClosedF
Add W to OpenF

end

else
Add W to OpenF

end

end

The implementation of Backwards-Expand is analogous to Forward-Expand.

22

p1

p2

p1

p2 p3

p4

OpenF: {p1,p2} OpenF: {p3,p4}

Before After

Figure 5.3: Example for the behavior of Forward-Expand. In this situation, p2 was selected
for expansion and is removed from the open list. The children of p2 are p3 and
p4. p4 leads to a new node and is added to the open list. p3 leads to the same
node as p1, which the open list already contains. The comparison c(p1) > c(p3)
decides that p1 gets removed and p3 gets added to the open list.

5.3 Algorithm comparisons

In Figure 5.4 the steps of the A* and NBS algorithms are compared. One can see how
the A* algorithm has to “backtrack” when the heuristic leads it into a dead end. In this
case the NBS algorithm is expanding more equally. It still reaches the dead ends, however
they are prioritized less due to the additional knowledge gained through the bidirectional
search. The forward search eventually depletes all the paths with small estimates. While
the backwards search is likely to have such possibilities as well, the lower bound lb contains
the maximum of both. As the forward estimate is already high, the backwards search
explores paths with low cost instead. This can be beneficial in many cases, however for
this puzzle it does worse than both A* and IDA*.

For the puzzle in Figure 5.5, one can see how the IDA* algorithm does significantly worse
than both other algorithms. It runs into it’s depth bound often and therefore has to
evaluate a lot more nodes. A* runs into fewer dead ends when compared to the puzzle in
Figure 5.4 and reaches the goal quickly.

23

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300 350 400 450 500

D
e
p
th

Step

one-free/15-puzzle-b.sbp - A*, IDA*, NBS

A*
IDA*

NBS forward
NBS backward

Figure 5.4: Depth for every step of the A*, IDA* and NBS algorithms. The puzzle is
displayed in Figure 5.6.

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600

D
e
p
th

Step

one-free/3x3-a.sbp - A*, IDA*, NBS

A*
IDA*

NBS forward
NBS backward

Figure 5.5: Depth for every step of the A*, IDA* and NBS algorithms. The puzzle is
displayed in Figure 5.7.

24

Figure 5.6: Visualization of the one-free/15-puzzle-b puzzle.

Figure 5.7: Visualization of the one-free/3x3-a puzzle.

25

6 Implementation

For this thesis, the A*, IDA*, and NBS algorithms were implemented. Additionally, a
website and a command-line tool are provided for displaying and solving puzzles. The
algorithms were implemented using the Rust programming language, and compiled as a
library (“crate”) so they can be integrated into multiple projects. The command-line
interface was implemented separately, using Rust as well.

6.1 Command-line Tool

The provided command-line binaries can be run on most Windows and Linux operating
systems, without any additional dependencies. They can solve sliding block puzzles that
are provided in the “.sbp” file format, which can be created by tools such as the SBP
Solver program by Pierre-Francois Culand. Extended logging is available and has been
used to create the evaluation depth graphs used in this thesis.

The tool can be configured with the following command-line options:

--solver algorithm name Chooses the algorithm for solving the puzzle.
Options for algorithm name: AStar, IDA, NBS.
If the solver option is not specified, the A* al-
gorithm is used by default.

--duration Prints out the time that the program took to
solve the puzzle.

--evaluation Option Map prints out the number of nodes that
were expanded. For each depth value, the num-
ber of nodes expanded is printed out in one line.
For the NBS algorithm, forward and backward
expansions are printed separately. Option List
prints out the current depth of each iteration of
the algorithm. Also prints two numbers when
NBS is selected.

--moves Prints out the length of the shortest path that
was found.

--result Prints out the steps of the path that was found.

26

Example usage:
./console --result --solver AStar puzzles/sbp-solver/Trivial.sbp

The evaluation option has been used to create the depth graphs in Figure 4.1 and Fig-
ure 5.4.

6.2 Locating performance problems

While this thesis mostly focuses on the number of node expansions as a performance metric
of an algorithm, the implementation had to have a minimum level of optimization for the
algorithm to terminate after a reasonable time. A variety of techniques have been used
to increase performance of the program. However, finding the slow sections of the code in
the first place is an important task. Otherwise the actions taken to speed up the program
might only have little effect.

The main tool used for this is the callgrind option included in the Valgrind tool for the
Linux operating system. In combination with the visualization tool KCachegrind, as seen
in Figure 6.1, the functions that take up a lot of runtime can be traced.

6.3 Transposition Tables

Since the graph of possible moves is cyclic, none of the algorithms described in this thesis
allow their search paths to loop. To avoid searching the same node twice, transposition
tables are used to store which nodes have already been visited. Since storing the entire
board position leads to high memory usage when we execute the algorithms, a hash of the
position is stored instead.

The hash value of any board is calculated by taking the pieces of the board and combining
their hashes. The piece hashes are made up by their position as well as their type. The
type of a piece is a unique number, if the piece has a goal position. If the piece has no
goal position, it shares a type with all other goal-less pieces that have the same width and
height. This results in a hash value that changes when any piece is moved. However, if
two pieces that have the same size and no goal position are swapped, the hash value stays
the same.

A set of these hashes, the transposition table, is kept in a HashSet. The Rust HashSet
and HashMap structs have an expected time complexity of O(1) for getting an element
(see [8]), which means the transposition table can be quickly checked to see if any board
position has been visited before.

27

Figure 6.1: KCachegrind application window

6.4 Efficient Computation of Possible Moves

When implementing the different path finding algorithms, a universal source of slowdown
became apparent. For any of the algorithms a lot of nodes have to be expanded, meaning
that all possible moves of a given board position have to be calculated.

The original implementation used a simple list of pieces. Every piece was moved in every
possible direction and was checked for intersections with other pieces or walls. If no
intersections were found, the move was marked as valid. This method of comparing list
elements with each other turned out to be a major factor in the runtime of the program.
The assumed reason for this slowdown is that every piece has to be checked for intersection
with every other piece, for every possible move direction. This does not seem to scale well
for puzzles with many pieces.

To solve this problem, the bitboard technique as described in [9] was implemented. While
a list of pieces is still required, a representation of blocked fields of the board is created
as well. This is done by mapping every bit of a unsigned 64-bit number to a position of
the board. If a piece occupies a certain position the bit is set to one, otherwise it stays at
zero.

If we want to check if a certain piece can move to any position, we only have to remove
the bits of the piece we want to move from the board. This is necessary since pieces can
occupy many spaces, and could potentially intersect with their old position after a move.
When all target positions are zero, the move is valid. This reduces the amount of checks

28

that have to be done from comparing every piece with every other piece to just checking
a few bits. After implementing this technique, the overall amount of time for calculating
moves was reduced to an insignificant amount.

6.5 Implementing the Linear Conflict Heuristic

While the concept of the Linear Conflict heuristic is relatively simple, the actual imple-
mentation details prove difficult to get right. When there are multiple conflicts in the
same row, it is simply not possible to sum up the conflicts, since they may interlock and
could be solved in a faster way. Failing to fix this would result in a heuristic that would
not be admissible. The solution used for solving this first lists all the pairs for every row
and column. For each of these rows or columns, the piece with the biggest number of
pairs containing it is selected. All those pairs are removed and two moves are added to
the heuristic value. This happens because we assume the piece will be moved out of the
way in the solution, incurring an extra cost of two and solving all conflicts regarding this
piece. Then the next piece is selected, repeating the process until all conflicts in this row
or column are solved.

6.6 Priority queue for A*

The A* algorithm requires the selection of a node with the smallest goal distance out of
all nodes in the pending list. An easy way to implement this is to use a priority queue
for storing the pending list, which will sort the nodes by their goal distance. To enforce
a consistent behavior, the queue will sort entries by the first-in-first-out principle if their
goal distances are equal. This is not required for the correctness of the algorithm, but
makes the algorithm steps independent of the actual implementation of the queue.

29

7 Algorithm timings

Timings have been generated using the command-line tool, solving each puzzle sequentially
with each of the three algorithms. For puzzles where the NBS algorithm is not guaranteed
to find optimal paths, the entries are marked with the word skip in the table. The timings
were measured on a computer with a Intel R© CoreTM i7-4790 CPU with a 3.6 GHz clock
rate. The application runs single-threaded.

The length column shows the lowest number of moves to solve the puzzle. Since all used
algorithms find optimal paths, their length will always be the same. The actual moves of
the path might differ between algorithms.

The time columns show the measured time it took for each algorithm to find the optimal
path. The timing starts after the puzzle has been loaded, right before the first step of
the selected algorithm. It ends when the algorithm has finished, but before the results are
printed out to the console. When the time to solve the puzzle exceeds thirty seconds, the
solver is terminated and marked by the entry “-” in the table.

The expanded columns are displaying the total number of nodes that have been visited
and expanded by the selected algorithm.

Our puzzle selection is sorted by different categories. The first category one-free contains
different variants of the 15-puzzle on a four by four grid, as well as similar puzzles in
smaller sizes. All blocks on the grid are spanning only a single field, and there is only
one free space on the board. The gauntlet category has only a single free space as well.
However, the blocks vary in size and the solution paths are considerably longer than the
previous puzzles. The last category sbp-solver has more varied puzzles, containing the
Century puzzle by John Conway and some levels from the Rush Hour game.

30

puzzle length time expansions

A* IDA* NBS A* IDA* NBS

one-free/15-puzzle-a 44 5s, 78ms 5s, 17ms - 546952 2107984 -
one-free/15-puzzle-b 39 1ms <1ms 7ms 214 127 462
one-free/15-puzzle-c - - - - - - -
one-free/15-puzzle-d - - 27s, 969ms - - 12522519 -

one-free/3x3-a 20 <1ms <1ms <1ms 145 515 162
one-free/3x3-b 30 30ms 25ms 215ms 10549 23665 6202
one-free/3x3-c 23 1ms 2ms 5ms 511 1887 712
one-free/4x3-a - - - - - - -
one-free/4x3-b 30 48ms 32ms 754ms 10149 20814 8123

gauntlet/Gauntlet 243 2ms 325ms skip 1137 214147 skip
gauntlet/Gauntlet1 235 4ms 1s, 223ms skip 2240 905564 skip
gauntlet/Gauntlet2 311 1ms 1s, 494ms skip 945 1012689 skip

gauntlet/Gauntlet484 484 18ms - skip 7398 - skip
gauntlet/Gauntlet5 415 13ms 7s, 274ms skip 5008 3706943 skip
gauntlet/Gauntlet6 183 1ms 99ms skip 766 67628 skip

sbp-solver/BlockAdo 103 9ms - skip 4444 - skip
sbp-solver/BlockAdo+ 152 12s, 338ms - - 1919344 - -

sbp-solver/Century 131 83ms - skip 41700 - skip
sbp-solver/Donkey 116 52ms - skip 23912 - skip

sbp-solver/RushHour-39 82 9ms - skip 3781 - skip
sbp-solver/RushHour-40 81 8ms - skip 2962 - skip

31

7.1 Analyzing the timings

When looking at the timings for the A* and IDA* algorithms in the one-free category,
A* is slightly slower than IDA*. In most cases the A* algorithm only expands half as
many boards. Due to the simplicity of the IDA* algorithm, it seems to expand boards at
a slightly quicker pace. Compared to the other two algorithms, then NBS algorithm runs
significantly slower. In most cases it expands more boards than A* and less boards than
IDA*.

In the gauntlet category, A* significantly outperforms IDA* in both time and expansion
count. In most cases, IDA* expands about one hundred times more nodes than A*. This
seems to happen due to the long solution paths of the puzzles. The NBS algorithm is not
applicable in this set of puzzles, since they do not have defined goal positions.

The sbp-solver puzzles were only able to be solved by the A* algorithm. Comparing the
node expansions to the previous category, the puzzles seem to be slightly harder. This
seems to be fatal for the IDA* algorithm’s runtime, as it exceeds the thirty second limit
for every puzzle. In the one puzzle where the NBS algorithm was applicable, it exceeded
this limit as well.

When looking at the overall results, the A* algorithm seems to be the best choice for
solving sliding block puzzles. However, the thirty second time limit has been chosen for
a reason. After experimenting with the runtime of the program, the approximately 13
GB of free RAM were completely filled up. If the algorithm ran for around 35 seconds,
it was likely to crash the application with an out-of-memory error. Of course, runtime
isn’t a good measurement of how much memory the A* algorithm consumes. Most of the
memory is consumed by the open list, which can grow at different speeds depending on
the shape of the puzzle.

32

8 Conclusion

In this thesis three different algorithms for solving sliding block puzzles were described.
These algorithms were originally designed for general graph search and have been adapted
to fit the specific requirements.

Out of all the algorithms, the A* algorithm has shown to be the most efficient algorithm
for many of the tested puzzles. Its runtime was consistently faster or at least similar to
the other algorithms. The downside of using this algorithm is the increased memory con-
sumption. While this was not explicitly measured in this thesis, it often lead to problems
during testing.

The IDA* algorithm seems best suited for the puzzles from the one-free category, where
it outperformed A* by a small margin. The performance difference is mostly due to the
faster speed at which IDA* expands the nodes. This is likely the result of better optimized
code when compared to the implementation of the other algorithms.

Since the NBS algorithm is bidirectional, it is not applicable to many puzzles. On the
puzzles that it can be applied on, the node expansion count is in a similar range as the count
of the A* algorithm, while occasionally outperforming it. However, the implementation
was the most complex by far. This resulted in slower execution times, as optimizing this
code was out of scope for this thesis.

8.1 Future work

While this thesis has compared the overall speed of solving puzzles for each algorithm,
an unequal amount of time has been spent on implementing and optimizing the code for
each algorithm. For a more fair comparison, the amount of node expansions have been
examined. Future work could examine the actual performance of certain implementations.
Additionally, the memory usage of the algorithms could be measured as well.

33

A Instructions for accompanying CD

The CD provided with this thesis contains the source code for the three algorithm imple-
mentations, as well as a website for interactive play. For compiling the code, the Rust
compiler in version 1.32.0 or higher is required. It can be acquired through the Rustup
installer program at https://rustup.rs/.

The solver project folder contains the actual algorithms that were implemented. The code
can be found in the a star.rs, ida.rs and nbs.rs files in the solver/src directory.

The console project contains code for the command-line application. In the console direc-
tory, the cargo build command can be run to compile the code. The compiled application
will be located at target/debug/console or target/debug/console.exe depending on
your operating system.

The web project contains the code for the website. It also contains the collection of
puzzles, which is located at web/static/puzzles. For running the website, the cargo-web
subcommand in version 0.6.23 or higher is required, which can be installed with cargo

install cargo-web. In the web directory, the command cargo web start will run a local
website at http://localhost:8000. To build the website code for hosting, the command
cargo web deploy can be used.

34

https://rustup.rs/
http://localhost:8000

Bibliography

[1] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach, pp. 94–95,
Malaysia; Pearson Education Limited, 2010.

[2] O. Hansson, A. Mayer, and M. Yung, Criticizing solutions to relaxed models yields
powerful admissible heuristics, Information Sciences, vol. 63, no. 3, pp. 207–227, 1992.

[3] R. E. Korf, Depth-first iterative-deepening: An optimal admissible tree search, Artifi-
cial Intelligence, vol. 27, no. 1, pp. 97–109, 1985.

[4] R. Tarjan, Depth-first search and linear graph algorithms, SIAM Journal on Comput-
ing, vol. 1, no. 2, pp. 146–160, 1972.

[5] A. Mahanti, S. Ghosh, D. S. Nau, A. K. Pal, and L. N. Kanal, Performance of ida on
trees and graphs, in AAAI, pp. 539–544, 1992.

[6] J. Chen, R. C. Holte, S. Zilles, and N. R. Sturtevant, Front-to-end bidirectional heuris-
tic search with near-optimal node expansions, arXiv preprint arXiv:1703.03868 [cs.AI],
2017.

[7] Nathan R. Sturtevant, Bidirectional Search - GDC 2018 AI Summit. https://

movingai.com/GDC18/index.html, 2018. [Online; accessed 30-January-2019].

[8] The Rust Project Developers, Rust Documentation, Module std::collections. https:
//doc.rust-lang.org/1.32.0/std/collections/, 2013. [Online; accessed 16-
December-2018].

[9] R. Hyatt, Chess program board representations. https://web.archive.org/web/

20140205165421/http://www.cis.uab.edu:80/info/faculty/hyatt/boardrep.

html, 2014. [Online; accessed 21-January-2019].

35

https://movingai.com/GDC18/index.html
https://movingai.com/GDC18/index.html
https://doc.rust-lang.org/1.32.0/std/collections/
https://doc.rust-lang.org/1.32.0/std/collections/
https://web.archive.org/web/20140205165421/http://www.cis.uab.edu:80/info/faculty/hyatt/boardrep.html
https://web.archive.org/web/20140205165421/http://www.cis.uab.edu:80/info/faculty/hyatt/boardrep.html
https://web.archive.org/web/20140205165421/http://www.cis.uab.edu:80/info/faculty/hyatt/boardrep.html

Erklärung

Hiermit versichere ich, dass ich diese Bachelorarbeit selbstständig und ohne Benutzung an-
derer als der angegebenen Quellen und Hilfsmittel angefertigt habe und alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, als solche gekennzeichnet sind, sowie
dass ich diese Bachelorarbeit in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde
vorgelegt habe.

Passau, Februar 2019

Till Wübbers

36

	Zusammenfassung
	Introduction
	Rules
	Pieces
	Puzzle graph
	Paths

	Heuristics
	Admissibility
	Consistency
	Manhattan Distance
	Linear Conflict
	Modified Linear Conflict

	Graph search algorithms
	Graph shape
	Complexity
	Depth-first search and iterative deepening
	A*
	Iterative Deepening A*
	Comparing A* and IDA*

	Bidirectional Search
	Goal position
	Near-Optimal Bidirectional Search
	Algorithm comparisons

	Implementation
	Command-line Tool
	Locating performance problems
	Transposition Tables
	Efficient Computation of Possible Moves
	Implementing the Linear Conflict Heuristic
	Priority queue for A*

	Algorithm timings
	Analyzing the timings

	Conclusion
	Future work

	Instructions for accompanying CD

